Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Viruses ; 14(11)2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2090353

ABSTRACT

Since their discovery in the 1950s, rhinoviruses (RVs) have been recognized as a major causative agent of the "common cold" and cold-like illnesses, accounting for more than 50% of upper respiratory tract infections. However, more than that, respiratory viral infections are responsible for approximately 50% of asthma exacerbations in adults and 80% in children. In addition to causing exacerbations of asthma, COPD and other chronic lung diseases, RVs have also been implicated in the pathogenesis of lower respiratory tract infections including bronchiolitis and community acquired pneumonia. Finally, early life respiratory viral infections with RV have been associated with asthma development in children. Due to the vast genetic diversity of RVs (approximately 160 known serotypes), recurrent infection is common. RV infections are generally acquired in the community with transmission occurring via inhalation of aerosols, respiratory droplets or fomites. Following the outbreak of coronavirus disease 2019 (COVID-19), exposure to RV and other respiratory viruses was significantly reduced due to social-distancing, restrictions on social gatherings, and increased hygiene protocols. In the present review, we summarize the impact of COVID-19 preventative measures on the incidence of RV infection and its sequelae.


Subject(s)
Asthma , COVID-19 , Communicable Diseases , Picornaviridae Infections , Respiratory Tract Infections , Child , Adult , Humans , Rhinovirus/genetics , COVID-19/prevention & control , Physical Distancing , Asthma/complications , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/complications , Picornaviridae Infections/epidemiology , Picornaviridae Infections/prevention & control , Picornaviridae Infections/complications
2.
BMC Infect Dis ; 22(1): 253, 2022 Mar 14.
Article in English | MEDLINE | ID: covidwho-1741929

ABSTRACT

BACKGROUND: Human rhinovirus (HRV) is the predominant etiological agent of the common cold in children and adults. A recent study showed that the inhibitory effect of face masks on viral shedding of HRV was less prominent than that on other respiratory viruses. Considering that most Chinese people have worn face masks in public area since the outbreak of coronavirus disease 2019, we aimed to find out whether HRV prevailed among children in 2020 and demonstrate the details of the epidemiological features of HRV under such a special circumstance. METHODS: We summarized the incidences of various respiratory virus infections in patients who visited the Children's Hospital of Fudan University during 2018-2020, and genotyped HRV positive nasopharyngeal specimens collected from 316 inpatients and 72 outpatients that visited the hospital in 2020. RESULTS: There was a major prevalence of HRV among children in the latter half of 2020, with a clear seasonality that HRV-As prevailed in summer while HRV-Cs in autumn. HRV-As were more prone to cause severe lower respiratory tract infections (LRTI), while HRV-Cs were closely associated with childhood wheezing. The predominant genotypes were A11, A28, A47, A82, A101, C40 and C43. Notably, A21, A82 and A101 took up larger proportions in severe cases than in non-severe cases. CONCLUSIONS: Our findings described a major prevalence of HRVs among children in 2020, which highlight the unique transmitting pattern of HRV and help to narrow the targets for antiviral strategies.


Subject(s)
COVID-19 , Picornaviridae Infections , Adult , Child , China/epidemiology , Humans , Masks , Picornaviridae Infections/epidemiology , Picornaviridae Infections/prevention & control , Rhinovirus/genetics
3.
Microbiol Spectr ; 9(2): e0043021, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1398597

ABSTRACT

Measures intended to limit the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus at the start of the coronavirus disease 2019 (COVID-19) pandemic resulted in a rapid decrease in other respiratory pathogens. Herein, we describe the trends of respiratory pathogens in a major metropolitan health care system central microbiology reference laboratory before and during the COVID-19 pandemic, with attention to when COVID-19 mitigation measures were implemented and relaxed. During the initial lockdown period, COVID-19 was the primary respiratory pathogen detected by multiplex respiratory panels. As COVID-19 containment measures were relaxed, the first non-COVID respiratory viruses to return to prepandemic levels were members of the rhinovirus/enterovirus family. After the complete removal of COVID-19 precautions at the state level, including an end to mask mandates, we observed the robust return of seasonal coronaviruses, parainfluenza virus, and respiratory syncytial virus. Inasmuch as COVID-19 has dominated the landscape of respiratory infections since early 2020, it is important for clinicians to recognize that the return of non-COVID respiratory pathogens may be rapid and significant when COVID-19 containment measures are removed. IMPORTANCE We describe the return of non-COVID respiratory viruses after the removal of COVID-19 mitigation measures. It is important for the public and physicians to recognize that, after months of COVID-19 being the primary driver of respiratory infection, more typical seasonal respiratory illnesses have returned, and this return is out of the normal season for some of these pathogens. Thus, clinicians and the public must now consider both COVID-19 and other respiratory illnesses when a patient presents with symptomatic respiratory illness.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Coxsackievirus Infections/epidemiology , Coxsackievirus Infections/prevention & control , Enterovirus/isolation & purification , Humans , Mandatory Programs/statistics & numerical data , Orthomyxoviridae/isolation & purification , Orthomyxoviridae Infections/epidemiology , Orthomyxoviridae Infections/prevention & control , Picornaviridae Infections/epidemiology , Picornaviridae Infections/prevention & control , Rhinovirus/isolation & purification , SARS-CoV-2/growth & development , Texas/epidemiology
4.
J Med Virol ; 93(10): 6063-6067, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1296838

ABSTRACT

Social restrictions during the coronavirus disease 2019 pandemic strongly affected the epidemiology of influenza and respiratory syncytial virus (RSV). As rhinovirus seemed to spread despite the restrictions, we aimed to analyze rhinovirus epidemiology in children during the pandemic. This register-based study used data from the Finnish Infectious Disease Register. Nationwide rhinovirus findings from July 2015 to March 2021 were included and stratified by age (0-4, 5-9, and 10-14). Cumulative 14-day incidence per 100000 children was calculated. Four thousand five hundred and seventy six positive rhinovirus findings were included, of which 3788 (82.8%) were among children aged 0-4. The highest recorded incidence was 36.2 among children aged 0-4 in October 2017. The highest recorded incidence during the pandemic period was 13.6 in November 2020. The impact of the restrictions was mostly seen among children aged 0-4 years of age in weeks 14-22 in 2020. The incidence has since remained near reference levels in all age groups. Strict restrictions temporarily interrupted the circulation of rhinovirus in spring 2020. Rhinovirus incidence returned to normal levels soon after the harsh restrictions were lifted. These looser social restrictions prevented RSV and influenza seasons but failed to prevent the spread of rhinovirus.


Subject(s)
Picornaviridae Infections/epidemiology , Picornaviridae Infections/prevention & control , Rhinovirus , Adolescent , Age Factors , COVID-19 , Child , Child, Preschool , Finland/epidemiology , Humans , Infant , Infant, Newborn , Pandemics , Physical Distancing , Respiratory Syncytial Virus, Human , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/virology
7.
Euro Surveill ; 25(49)2020 12.
Article in English | MEDLINE | ID: covidwho-972565

ABSTRACT

BackgroundEvidence for face-mask wearing in the community to protect against respiratory disease is unclear.AimTo assess effectiveness of wearing face masks in the community to prevent respiratory disease, and recommend improvements to this evidence base.MethodsWe systematically searched Scopus, Embase and MEDLINE for studies evaluating respiratory disease incidence after face-mask wearing (or not). Narrative synthesis and random-effects meta-analysis of attack rates for primary and secondary prevention were performed, subgrouped by design, setting, face barrier type, and who wore the mask. Preferred outcome was influenza-like illness. Grading of Recommendations, Assessment, Development and Evaluations (GRADE) quality assessment was undertaken and evidence base deficits described.Results33 studies (12 randomised control trials (RCTs)) were included. Mask wearing reduced primary infection by 6% (odds ratio (OR): 0.94; 95% CI: 0.75-1.19 for RCTs) to 61% (OR: 0.85; 95% CI: 0.32-2.27; OR: 0.39; 95% CI: 0.18-0.84 and OR: 0.61; 95% CI: 0.45-0.85 for cohort, case-control and cross-sectional studies respectively). RCTs suggested lowest secondary attack rates when both well and ill household members wore masks (OR: 0.81; 95% CI: 0.48-1.37). While RCTs might underestimate effects due to poor compliance and controls wearing masks, observational studies likely overestimate effects, as mask wearing might be associated with other risk-averse behaviours. GRADE was low or very low quality.ConclusionWearing face masks may reduce primary respiratory infection risk, probably by 6-15%. It is important to balance evidence from RCTs and observational studies when their conclusions widely differ and both are at risk of significant bias. COVID-19-specific studies are required.


Subject(s)
COVID-19/prevention & control , Eye Protective Devices , Influenza, Human/prevention & control , Masks , Picornaviridae Infections/prevention & control , Respiratory Tract Infections/prevention & control , Tuberculosis/prevention & control , COVID-19/transmission , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Humans , Influenza, Human/transmission , Picornaviridae Infections/transmission , Respiratory Protective Devices , Respiratory Tract Infections/transmission , SARS-CoV-2 , Tuberculosis/transmission
SELECTION OF CITATIONS
SEARCH DETAIL